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Fluctuations of the composition of a system close to equilibrium of a reversible first order re
action were studied by the simulation method. Returns into the state corresponding to the deter
ministic equilibrium and the frequency of fluctuations on one side of the equilibrium were exa
mined . 

It was shown in preceding communications1 •2 how the stochastic model of a reversible first-order 
reaction can be used in studying the statistic and dynamic characters of the equilibrium and f1uc
'tuations of the number of particles both of the reactant and the product in the system. In the 
special case of a reaction with unit equilibrium constant, the short-time fluctuations of the system 
composition close to equilibrium can be represented approximately by the mathematic model 
of ideal coin tossings 1 ; in the study of long-time fluctuations it must be kept in mind that the re
action represents a finite periodic Markov chain 2

. In the present work, certain results of the study 
of fluctuations are illustrated on the basis of the previously described simulation method3 • In 
contrast to the orginal version of the method, where the life times of all particles of the system 
were generated' and the least of them was sought, this smallest life time was now generated di
rectly with the use of the expression for the probability density of the smallest number from 
a set of N random numbers, X~~ . If we assign to this random quantity another random quantity 
Y by the equation 

(1) 

then 

Prob {x < X~)n < X + dx} = N(1- x)N-l dx = Prob {y < Y < y + dy} = dy, (2) 

where y = 1 - (1 - x)N. If a random number (strickly speaking, pseudorandom number), Y, is 
generated, to which the number X~~J is assigned according to (1) then the numbers X~~~ thus 
obtained have the same distribution as those generated by the previous method (by selectio"n 
from a set of N generated random numbers). 

The reaction is modelled as follows. In a closed system there is a constant total number, N, 
of particles of the type A and B, their numbers being N A and N B' A particle A can be transformed 
to B and vice versa; the probability of the conversion A-'7 B during a time interval (t, 1 + /).t), 

where /).t -'7 0, is kl 111, and the probability of the reverse case B-'7 A during the same time 
interval is k 2 /).t. We assume for the sake of simplicity that kl = k 2 • hence a unit equilibrium 
constant of the reaction K = k 1/k2 . The state of the system is characterized by the number of 
particles A, N A . 
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In the study of fluctuations, it is advantageous to replace the time scale of the reaction by the 
number of reaction events scale2 (a reaction event will be understood as an elementary change 
of particle A to B or B to A). For this purpose, transition probabilities can be derived from the 
model. If the system is in the state N A = i then the probability that it will pass into the state j 
by a subsequent reaction event is 

{

(N- i) jN for /=.i + J, 
Pij = l i N for J = 1- 1 , 

o in other cases. 
(3) 

The reaction is fully characterized by the stochastic matrix Ilpij II as a Markov chain in the number 
of reaction events scale. In this scale the course of the reaction can be simulated in a still more 
simple manner on the basis of the relation (3): if a generated pseudorandom number, X, is 
larger than il N then B is converted to A; if X < il N then A is converted to B. With this method, 
however, a return into the time scale is not possible. We proved that all the mentioned methods 
of simulation of the reaction are equivalent and correspond to a finite periodic Markov chain 
reaction model (in the time scale to the model of linear birth and death processes4 ). 

It follows 4 from the properties of the stochastic matrix Ilpij II that the system, which was initially 
in the state i, returns into this state after a certain number of reaction events, the mean number 
of events between repeated returns into the state i, Pi> being characteristic for this state. As deduced 
earlier2

, the smallest mean number of events between the returns characterizes the state N!2 (we 
assume N even for simplicity), which corresponds to the deterministic equilibrium composition 
NA = NB = N12: PN{2 ~ (nNI2)1 {2. 

Based on the mentioned reaction model and modes of simulation, fluctuations of the composi
tion of a system were studied, in which a chemical reaction A +t B with a unit equilibrium con
stant proceeds. The state NA = NI2 was always chosen as initial. In a system with N= 100, 

FIG. 1 

Mean Number of Reaction Events between 
Returns to Equilibrium 

The ratio of the number of events realized 
up to the n-th return to the total number 
of returns into the state N A = N!2 is denoted 
as min. The points were connected with 
a broken line for illustration. 1 N = 100 
(1150 ~ 12'5); 2 N ~ 1 000 (11~00 ~ 39-6); 

. 3N ~oo. 
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13 210 reaction events were simulated, during which 1000 returns into the equilibrium occurred 
(i.e. into the state N A = 50). In a system with N = 1000, 23444 reaction events were simulated, 
during which 500 returns into the state N A = 500 occurred. With the model of ideal coin tossings 
(corresponding to a system with N = 00), 44868 events (to&sings) were simulated, during which 
an equalization of the number of heads and tails occurred 250 times. 

First the frequency of returns into the state NA = N /2 was studied. The ratios of the number, 
of realized events, m, up to the n-th return, to the number of returns, n, in systems with N = 100 
1000 and 00 are plotted in Fig. 1. In the latter case a finite mean value of the number of events 
between returns to equilibrium (i.e. to the state where the numbers of simulated heads and tails 
are equal) does not exist and the number of returns increases not with the first power but with 
the square root of the number of events (cf discussion of the model of ideal coin tossing in ref. 4

) 

For finite N the Fig. 1 illustrates how the ratio min approaches f.lN/2 with increasing number 
of returns. 

For N = 100, the number of returns after two reaction events was 511 , after four 137 from the 
total number of 1000 returns in accord with the theoretical probabilities of return after two 
(0'510) and four (0'130) events. The longest fluctuation beyond the equilibrium lasted for 262 
reaction events. For N = 1000, the number of returns after two reaction events·was 229, after 
four 84 of the total of 500 simulated returns. Theoretical probabilities of return after two and 
four events are 0'501 and 0'1255, which would correspond on the average to 250 and 63 returns 
after two and four events of the total of 500 returns. The longest fluctuation beyond equilibrium 
lasted for 1804 reaction events. During simulation of the ideal coin tossing model, the number 
of returns into the initial state after two events (tossings) was 125 (theoretical mean: 125) and 
after four 35 (theoretically 31) of the total of 250 returns. The longest fluctuation lasted for 
13 705 events (hence about 30% of the total number of simulated events). 

Further, the number of intervals between neighbouring events was studied, in which the system 
persisted on one side of equilibrium. (In this case we use the following definition: The system is 

500 

FIG. 2 

Fraction of Fluctuations on one Side of Equilibrium 

y = I x+ - x_I / (x_ + x+), n denotes number of returns into the state NA = N/ 2 
(for x+ and x_ see text). The points were connected wjth a broken line for illustration. 
1 N = 100; 2 = 1000; 3 N = 00 (theoretical mean value of y is for this case and m -+ 00 

about 0'64). 
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between the moth and (m + 1)-st reaction event in a state above equilibrium if NA > N/2 after 
the moth and/or (m + 1) st reaction event; analogously, the system is in the same interval below 
equilibrium if NA < N /2 after the moth and/or (m + 1)-st reaction event.) Fig. 2 shows how 
in a system of a finite number of particles the ratio Ix+ - x_I/(x+ + x_), where x+ and x_ 
denote numbers of intervals, during which the system persisted above and below equilibrium, 
respectively, decreases to zero with increasing number of returns. Fig. 2 illustrates the fact that 
the finite system studied for a sufficiently long time persists on both sides of equilibrium approxim
ately for an equal number of intervals. In the case of the ideal coin tossings model, however, the 
system persists prevailingly on one side of the original state (cf. the Chung-Feller theorem and 
the first arcsine law4

) even when the probability that the ratio of the numbers of heads and tails 
is arbitrarily close to one approaches unity with increasing number of events. 
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